COREY OXIDATION OF AN ALDEHYDO 2,3-DIDEOXY-HEX-2-ENOSE TRIACETATE1

Steve Y-K. Tam and Bert Fraser-Reid

Chemistry Department, University of Waterloo, Waterloo, Ontario, Canada. (Received in USA 5 June 1972; received in UK for publication 22 June 1972)

In a recent communication from this laboratory it was reported that the unsaturated aldehyde <u>1</u> could be obtained from triacetyl glucal by hydrolysis with boiling aqueous dioxan². This reaction has been found to be general for acetylated glycals³, and in exploring prospects for the aldehydes so obtained, it was noted that the aldonic acids derivable from them would contain an α , β -unsaturated carboxyl grouping reminiscent of that found in ascorbic acid⁴, and other carbohydrates of biological importance⁵. A method for oxidation of <u>1</u> seemed to be the elegant process developed recently by Corey⁶ and summarised in Scheme I. However, when applied to the aldehyde, the oxidation took a course (Scheme II) which appears to have been triggered by the presence of an acetoxy function at the γ -position.

The fully acetylated aldehyde $\underline{2}$ (1.0 g; 3.7 mmole) was stirred with a mixture of sodium cyanide (0.8 g; 16.3 mmole), acetic acid (3 ml; 3.7 mmole) and manganese dioxide (5.75 g; 66.0 mmole) in methanol for twelve hours at room temperature. Filtration and evaporation of the methanol afforded a residue which was partitioned between ether and water. The ether phase yielded a syrup which was fractionated on a silica column to give two crystalline substances $\underline{3}$ and $\underline{4}$ in 45% total yield.

3151

For <u>3</u>: mp 55-56°C. $C_7H_{10}O_3$. M⁺ m/e=142 (Calcd: C, 59.15; H, 7.05. Found: C, 59.02; H, 6.83). λ_{max}^2 256. μ_{max}^- 1620, 1650, 1705, 3300 cm⁻¹. NMR (CDCl₃, TMS) τ 6.92 (OCH₃); \sim 5.65 (H-6, H'-6); 4.1 (H-2); 3.2-3.8 (H-4, H-5); 2.6 (H-3) J_{23}^{-15} . For <u>4</u>: mp 157-159°C. $C_8H_{10}O_4$ (Calcd: C, 56.5; H, 5.88. Found: C, 56.8; H, 5.73). λ_{max}^2 257. μ_{max}^- 1610, 1710 cm⁻¹. NMR (CDCl₃, TMS) τ 6.2 (OCH₃); 3.9 (H-2, H-5); 2.6 (H-3, H-4). $J_{23}^{-1}J_{45}^{-13}$ Hz; $J_{24}^{-1}J_{45}^{-3}$ Hz.

The hydroxyester <u>3</u> was hydrogenated to give methyl 6-hydroxyhexanoate, an authentic sample of which was prepared from 6-hexanolactone by methanolysis. Compound <u>3</u> was a primary reaction product since it could be obtained in a pure state by treatment of <u>2</u> with sodium cyanide in methanol for two hours. On oxidation with manganese dioxide in methanol <u>3</u> gave an isolable aldehyde <u>5</u> (τ 0.13, J₁₂=6 Hz) which with the Corey reagents⁶ then gave the diester <u>4</u>.

This sequence permits a rationalisation for the course of oxidation of $\underline{2}$. The cyanohydrin <u>6</u> instead of being oxidised (c.f. Scheme 1) is deprotonated to give a stabilised "acyl carbanion equivalent" ⁷ <u>7</u> such as that operative in a benzoin condensation. The carbanion <u>7</u> is dissipated by loss of the γ -acetoxy group and the resulting dienol <u>8</u> ketonises by ejection of the δ -acetoxy group. The resulting α -ketonitrile <u>9</u> is then methanolised to give ester <u>10</u> the acetate group of which is hydrolyzed to give <u>3</u>. The latter suffers the fate described in the last paragraph.

References

- 1. Presented in Part at the CIC Conference, Quebec City, Quebec, Canada June 7th, 1972.
- 2. B. Fraser-Reid and B. Radatus, J. Amer. Chem. Soc., 92, 5288 (1970).
- 3. S. Y-K. Tam, unpublished results.
- 4. T. Reichstein and A. Grüssner, Helv. Chim. Acta. 17, 510 (1934).
- A. K. Ganguly and O. Z. Sarre, <u>Chem. Commun.</u>, 1149 (1969); H. H. Baer and W. Rank, Can. J. Chem., 47, 2811 (1969).
- 6. E. J. Corey, N. W. Gilman and B. E. Canem, J. Amer. Chem. Soc., <u>90</u>, 5616 (1968).
- 7. G. Stork and L. Maldonado, J. Amer. Chem. Soc., 93, 5286 (1971).